Layer-wise analysis of deep networks with Gaussian kernels

نویسندگان

  • Grégoire Montavon
  • Mikio L. Braun
  • Klaus-Robert Müller
چکیده

Deep networks can potentially express a learning problem more efficiently than local learning machines. While deep networks outperform local learning machines on some problems, it is still unclear how their nice representation emerges from their complex structure. We present an analysis based on Gaussian kernels that measures how the representation of the learning problem evolves layer after layer as the deep network builds higher-level abstract representations of the input. We use this analysis to show empirically that deep networks build progressively better representations of the learning problem and that the best representations are obtained when the deep network discriminates only in the last layers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Analysis of Deep Networks

When training deep networks it is common knowledge that an efficient and well generalizing representation of the problem is formed. In this paper we aim to elucidate what makes the emerging representation successful. We analyze the layer-wise evolution of the representation in a deep network by building a sequence of deeper and deeper kernels that subsume the mapping performed by more and more ...

متن کامل

Accelerating Deep Gaussian Processes Inference with Arc-Cosine Kernels

Deep Gaussian Processes (DGPs) are probabilistic deep models obtained by stacking multiple layers implemented through Gaussian Processes (GPs). Although attractive from a theoretical point of view, learning DGPs poses some significant computational challenges that arguably hinder their application to a wider variety of problems for which Deep Neural Networks (DNNs) are the preferred choice. We ...

متن کامل

Net-Trim: A Layer-wise Convex Pruning of Deep Neural Networks

and quantum settings Model reduction is a highly desirable process for deep neural networks. While large networks are theoretically capable of learning arbitrarily complex models, overfitting and model redundancy negatively affects the prediction accuracy and model variance. Net-Trim is a layer-wise convex framework to prune (sparsify) deep neural networks. The method is applicable to neural ne...

متن کامل

Deep Gaussian Process Regression (DGPR)

A Gaussian Process Regression model is equivalent to an infinitely wide neural network with single hidden layer and similarly a DGP is a multi-layer neural network with multiple infinitely wide hidden layers [Neal, 1995]. DGPs employ a hierarchical structural of GP mappings and therefore are arguably more flexible, have a greater capacity to generalize, and are able to provide better predictive...

متن کامل

Deep Neural Networks as Gaussian Processes

A deep fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP) in the limit of infinite network width. This correspondence enables exact Bayesian inference for neural networks on regression tasks by means of straightforward matrix computations. For single hiddenlayer networks, the covariance function of this GP has long been known. Recent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010